A

1e Open Source Business Resource

Editorial
Dru Lavigne

Open Source Vulnerability Database Project
Jake Kouns

Coverity Report
David Maxwell

Security Hardening of Open Source
Software: An Overview

Robert Charpentier, Mourad Debbabi, Azzam
Mourad & Marc-André Laverdiere

Language Insecurity
Frederic Michaud & Frederic Painchaud

TIM Lecture Series
Stoyan Tanev & Ian Skerrett

Current Affairs: The Canadian DMCA: A
Betrayal
Michael Geist

Q&A

Alan Morewood
Call for Proposals
Recent Reports

J U N E Newsbytes

Upcoming Events

2008

JUNE
2008

PUBLISHER:

The Open Source Business
Resource is a monthly pub-
lication of the Talent First
Network. Archives are
available at the website:
http://www.osbr.ca

EDITOR:
Dru Lavigne
dru@osbr.ca

ISSN:
1913-6102

ADVERTISING:
Rowland Few
rowland@osbr.ca

GRAPHICS:
Ryan May

ADVISORY BOARD:
Tony Bailetti
John Callahan
Kevin Goheen
Leslie Hawthorn
Peter Hoddinott
Thomas Kunz
Steven Muegge
Trevor Pearce
Stoyan Tanev
Michael Weiss

© 2008 Talent First Network

 ©

OME RIGHTS RESERVEL

§gribus

n Source Desktop Publishing

Dru Lavigne discusses the editorial theme of Security.

Jake Kouns, president of the Open Security Foundation,
introduces the Open Source Vulnerability Database
Project.

David Maxwell, Open Source Strategist at Coverity,
discusses the findings from Coverity's analysis of over
55 million lines of open source code.

Robert Charpentier from Defence Research
Establishment Valcartier and Mourad Debbabi, Azzam
Mourad and Marc-André Laverdiere from Concordia
University present a summary of their research into
providing security hardening for the C programming
language.

Frederic Michaud and Frederic Painchaud from
Defence Research and Development Canada describe
their evaluation of automated tools that search for
security bugs.

Key messages from Carleton University's Stoyan
Tanev's recent presentation on technology marketing
trends and the Eclipse Foundation's Ian Skerrett's
presentation on building successful communities.

Michael Geist, Canada's Research Chair of Internet and
E-commerce Law, explains why the proposed Bill C-61
does not address the rights of Canadians.

Alan Morewood from Bell Canada provides an example
of open source meeting a business need.

10

15

21

28

33

35

37

39

40

41

43

http://www.osbr.ca

If you google the phrase "open source se-
curity", you'll find plenty of articles
which debunk the "myth" of open source
security, fuel the debate of Linus' law
(http://en.wikipedia.org/wiki/Linus
%27s_Law) vs. security through obscurity
(http://en.wikipedia.org/wiki/Security_
through_obscurity), or argue which type
of software, proprietary or open source, is
more secure. Yet, the question "which
type of software is more secure?" is im-
possible to answer. Software security is
highly dependent upon many variables:
the programming language used, the
practices implemented by the individual
programmers, the processes imposed by
the specific organization overseeing the
programmers, and the configuration of
the software by a particular end-user.

This issue of the OSBR examines several
facets of open source security. Jake Kouns
from the Open Security Foundation intro-
duces an open source project which man-
ages a global collection of vulnerabilities,
available for free use by the information
security community. David Maxwell from
the Coverity Scan project discusses their
report on code defect trends from an ana-
lysis of several hundred open source pro-
jects, representing 55 million lines of
code, through 14,000 build sessions over
a two year period.

Security research is led by the Govern-
ment of Canada and Canadian universit-
ies. Robert Charpentier from Defence
Research Establishment Valcartier and
Mourad Debbabi, Azzam Mourad, and
Marc-André Laverdiére of Concordia Uni-
versity present key concepts related to se-
curity hardening and their applicability
to the C programming language. Frederic
Michaud and Frederic Painchaud from
Defence Research and Development
Canada discuss the results and recom-
mendations from their analysis of auto-
matic source code verifiers that search
for program sanity and security bugs.

EDITORIAL

In addition to the articles, Michael Geist,
Canada Research Chair of Internet and E-
commerce Law, discusses Bill C-61, which
will amend the Canadian Copyright Act,
and suggests actions for those who dis-
agree with the proposed legislation. Alan
Morewood from the security division of
Bell Canada provides an example of a
business reason for using open source to
assess an organization's security risk. This
month's conference report covers trends
in technology marketing and how to build
successful communities.

As always, we look forward to your feed-
back. In particular, we're interested in
your suggestions for editorial themes bey-
ond the September issue. If you have a
topic you would like to see discussed,
send an email to the editor.

Dru Lavigne
Editor-in-Chief

dru@osbr.ca

Dru Lavigne is a technical writer and IT
consultant who has been active with open
source communities since the mid-1990s.
She writes regularly for O'Reilly and
DNSStuff.com and is author of the books
BSD Hacks and The Best of FreeBSD Basics.

OPEN SOURCE VULNERABILITY DATABASE

"Secrecy prevents people from accurately
assessing their own risk. Secrecy precludes
public debate about security, and inhibits
security education that leads to improve-
ments. Secrecy doesn't improve security; it
stifles it."
Bruce Schneier
http://www.schneier.com/blog/
archives/2007/01/debating full_d.html

This article introduces the Open Source
Vulnerability Database (OSVDB,
http://osvdb.org/) project which man-
ages a global collection of computer se-
curity vulnerabilities. It is freely available
to the information security community.
This collection contains information on
known security weaknesses in operating
systems, software products, protocols,
hardware devices, and other infrastruc-
ture elements of information technology.
The OSVDB project is intended to be the
centralized global open source vulnerab-
ility collection on the Internet.

Vulnerability Databases

A vulnerability is an error or weakness in
a component that allows it to be at-
tacked, resulting in unauthorized use of
the item or in damage to it and compon-
ents connected to it. In an information
technology network like the Internet, suc-
cessful exploitation of vulnerabilities can
result in operating system damage, illegal
release of information, data destruction,
disruption of service, and a galaxy of oth-
er tribulations.

Although we often discuss vulnerabilities
in general terms like "open to man-in-
the-middle attack” or "allows remote buf-
fer overflow", attackers and defenders
know that the essence of a security vul-
nerability is never the general descrip-
tion, but rather the vulnerability's
specific details. There are very few gener-
ic attacks that will work against multiple
targets.

Similarly, there are few general vulnerabil-
ities that simultaneously affect different
network components. Instead, the classic
vulnerability affects a single feature of
one release of a software product in-
stalled under a single operating system, a
feature that can be exploited in only one
way.

Out of the trillions of lines of code run-
ning in networked systems, a vulnerabil-
ity may exist in a single line. It is a unique
grain of sand in a mile-long beach. How
do those with systems containing that
unique flawed line know they are poten-
tial victims? And how do they identify a
solution?

As the number of network components
grows every year, the number of vulnerab-
ilities also grows. Annual vulnerability an-
nouncements now number in the
thousands, well beyond the capacity for
human memory to manage. Well-organ-
ized databases, with verified contents
and flexible search abilities, are required
if these vulnerabilities are to be con-
trolled by the security community.

A vulnerability database serves many
communities: businesses need to know
whether elements of their current or
planned computing environment are sus-
ceptible to security failures, system ad-
ministrators want alerts to relevant
security malfunctions and their cures,
software developers need warning when
their products have shown security flaws,
and security practitioners depend on a
comprehensive and standardized vulner-
ability list to build products and services.

Historically, it has been difficult to devel-
op a comprehensive, unbiased, and
timely resource that provides for these
needs. One reason for the difficulty is that
documenting and disseminating vulner-
abilities has become an enormous task.

http://www.schneier.com/blog/archives/2007/01/debating_full_d.html
http://osvdb.org

OPEN SOURCE VULNERABILITY DATABASE

CERT, the security vulnerabilities re-
search center at Carnegie Mellon Uni-
versity's Software Engineering Institute,
identified just 171 vulnerabilities in 1995,
but reported 7,236 in 2007: an increase of
over 4,000 percent in twelve years
(http://cert.org/stats/fullstats.html).
CERT's counts are considered conservat-
ive and the actual number of vulnerabilit-
ies facing administrators, developers, and
organizations may actually be higher.

The effort required to track vulnerabilit-
ies exceeds the resources of most organiz-
ations, and the volume of information
appearing each year is unlikely to de-
crease. To meet the growing need for vul-
nerability management, OSVDB
harnesses the efforts of the world's secur-
ity practitioners and the power of the
open source development model to loc-
ate, verify, and document this critical in-
formation.

OSVDB provides the necessary structure,
technology, and content to support the
security community's requirement for
vulnerability management. OSVDB aims
to be the leading open source project in
its field by helping practitioners evolve
and move beyond the current main-
stream reactionary model. By maintain-
ing a close connection with the security
community, by remaining unaffiliated
with commercial interests and open to
community content development, and by
actively promoting excellence in its oper-
ation, OSVDB will provide a stable, world-
class resource for all security projects and
practitioners.

The OSVDB Project

The OSVDB project was launched in 2002
following a realization in the security
community that no independent, com-
munity operated vulnerability database
existed. There were, and still are,
numerous vulnerability databases.

Some of these databases are managed by
private interests to meet their own re-
quirements, while others contain a lim-
ited subset of vulnerabilities or have
significant restrictions on their content.
OSVDB's project leaders have set out to
implement a vulnerability database that
meets three requirements. The database
must be: i) comprehensive; ii) open for
use; and iii) answerable to the com-
munity.

OSVDB is currently an active web applica-
tion available at http://www.OSVDB.org.
The project was originally deployed in
two major parts: a front end allowed vul-
nerabilities to be searched for and repor-
ted on, and a back end allowed
contributors to add or edit vulnerabilit-
ies. In order to streamline the process,
OSVDB has recently implemented a cus-
tomizable portal that fully integrates the
old back end interface and the front end
website. In addition, the method for up-
dating vulnerabilities has been changed
to a wiki-like system that allows contrib-
utors to edit individual fields when
needed. OSVDB is also available for
download in multiple database export
formats and as a very small Ruby on Rails
application. This application utilizes our
SQLite database export to give a user
their own, albeit relatively featureless, loc-
al OSVDB instance.

OSVDB moderators identify new vulner-
abilities and assign them a unique identi-
fier. This allows contributors the ability to
scour the web for information describing
a vulnerability, then capture the details in
a database record within OSVDB itself. A
moderator checks each vulnerability
entry before it is committed, to ensure
that the OSVDB's standards for clarity
and correctness are met. Once the up-
date has been accepted, it is available to
anyone requiring vulnerability informa-
tion from the database.

http://cert.org/stats/fullstats.html
http://www.osvdb.org

OPEN SOURCE VULNERABILITY DATABASE

The process is rapid, making new vulner-
abilities available to the community
quickly. It is also efficient, maximizing
productivity for the contributors and
moderators so that the team can keep
above the rising tide of vulnerability data.
The online process and the automation
that supports it have been improved con-
tinuously since the project opened, and
the OSVDB team will continue to add
value to the basic database and associ-
ated services over time.

Project Goals

Many security endeavors benefit from a
single source listing all vulnerabilities.
This is in contrast to a federated ap-
proach where multiple vulnerability lists
have to be queried and the results com-
bined to get a comprehensive result. De-
velopers creating vulnerability
assessment tools, system administrators
protecting servers and networks, busi-
ness staff assessing risks and remedies,
academic researchers documenting and
analyzing the past and future of network
security. All invest effort in identifying
vulnerabilities, all work to document
them consistently, and all can benefit
from a single, comprehensive source of
vulnerability data. The OSVDB project re-
duces duplication of effort and promotes
data consistency.

Serious users of any database evaluate its
sources and practices before placing trust
in its contents. OSVDB is unbiased and
neutral in its practices for accepting, re-
viewing, and publishing vulnerabilities.
Its open acceptance of community input
and internal review processes ensure that
the vulnerability database is not colored
by vendor biases. The OSVDB team works
hard to ensure that the content evenly re-
flects the actual distribution of vulnerab-
ilities, neither over-exposing nor
under-exposing particular operating sys-
tems, products, or vendors.

Some experts have raised concerns that
such a comprehensive security database
may present potential dangers of its own.
This is security's classic disclosure
(http://en.wikipedia.org/wiki/
Full_disclosure) problem. Can a vulnerab-
ility database help an attacker? It may do
so, but it provides a far more significant
benefit for defenders. Google can be con-
sidered the largest and most detailed vul-
nerability database in the universe. It
operates whether or not other vulnerabil-
ity lists exist, and provides the ultimate
resource for the dedicated attacker.

Given the breadth of information security
problems affecting businesses and indi-
viduals, it is easy to understand that sub-
scribers to security information span a
wide range of technical backgrounds and
skills. At times, some software vendors
have been criticized for releasing vulner-
ability information that lacks the details
system administrators need. Others have
drawn fire for complex vulnerability re-
ports that confuse home users and non-
technical staff. OSVDB includes both
business-level descriptions and the tech-
nical details for the vulnerabilities in the
database. Creating and supplying the
proper type of information for the inten-
ded audience allows OSVDB to serve all
consumers of vulnerability information.

Many security operations, whether stand-
alone organizations or security depart-
ments within enterprises, operate under
tight funding, and need to rely on the free
efforts of others to be successful. OS-
VDB's features and services benefit all se-
curity practitioners because they are
universally available, without distribu-
tion controls and without fees or charges.
OSVDB deliverables can be freely used,
whether as stand-alone components or
integrated into other tools.

http://en.wikipedia.org/wiki/Full_disclosure

OPEN SOURCE VULNERABILITY DATABASE

For example, an open-source web vulner-
ability scanner like Nikto
(http://www.cirt.net/nikto2) or Nessus
(http://www.nessus.org/) can use OSVDB
data to populate reports from a vulnerab-
ility scan. Both development teams con-
serve effort in finding and documenting
vulnerabilities, and the security com-
munity benefits from comprehensive and
consistent reporting capabilities.

OSVDB organizers believe that more than
one vulnerability database is needed to
meet the full variety of community re-
quirements. The 2nd Workshop on Re-
search with Security Vulnerability
Databases, stated that "no single proposi-
tion satisfies all parties involved" and
that the parallel pursuit of different
strategies would have the best opportun-
ity for success. OSVDB intends to fulfill
the recognized community requirements
for an open, centralized resource.

While it references other vulnerability
databases (http://www.osvdb.org/
ext_references), it develops its own data-
base entries to ensure that there are no
restrictions on distribution and re-use of
OSVDB vulnerability data. Its contents
are free of cost and free of restrictions on
use under the terms of the OSVDB Free
License (http://osvdb.org/

osvdb_license).

Project Accomplishments

Since March 31, 2004, when the OSVDB
first opened for public use, the project
has reached many milestones, including:

1. The formation of the Open Security
Foundation (http://www.opensecurity
foundation.org/) a non-profit
public foundation which provides inde-
pendent, accurate, detailed, current,
and unbiased security information to
organizations, protects the OSVDB from
commercial acquisition, and formalizes
the tax status of contributors.

2. The creation of the OSVDB vendor dic-
tionary, a free resource through which
the security community is able to gather
vendor contact information. The vendor
dictionary is a list of vendors, indexed by
name, which may be freely searched and
utilized by all who wish to find both gen-
eral and security contact information.
The service also provides a way for
vendors to keep their information
current within the dictionary.

3. The OSVDB blog (http://osvdb.org/
blog/) started as a way for the project to
keep the public better informed on the
project’s status. Very quickly, the blog
became a place to discuss and comment
on various aspects of vulnerabilities,
and has become a successful mechan-
ism for communicating with the secur-
ity industry.

4. A custom portal was implemented to
allow users to define specific alerting of
vulnerabilities with OSVDB's Watchlist
service. This service allows users to track
new vulnerabilities by vendor or
products and also consolidates vendor
security mailing lists.

5. The OSVDB displays relevant blogs for
additional reading and has the ability for
security practitioners to comment on
specific vulnerabilities. While OSVDB
has made every effort to include all refer-
ences in some fashion, we have imple-
mented a concise method for the com-
munity to add information about a
vulnerability.

6. A detailed classification system allows
OSVDB to track numerous fields for
each vulnerability. The enhanced data
allows users to find vulnerabilities based
on criteria such as attack type, solution
status, or whether or not the vulnerabi-
lity has been confirmed or disputed by
the vendor.

http://www.cirt.net/nikto2
http://www.nessus.org
http://www.osvdb.org/ext_references
http://osvdb.org/blog
http://osvdb.org/osvdb_license
http://www.opensecurityfoundation.org

OPEN SOURCE VULNERABILITY DATABASE

7. Integration and cross-referencing of
OSVDB via the application program-
ming interface (API) which can provide
multiple result formats to fit various
needs. Queries can be run against any
number of correlation factors, including
CVE ID (http://en.wikipedia.org/wiki/
Common_Vulnerabilities_and_
Exposures), Microsoft Bulletin ID,
Bugtraq ID (http://en.wikipedia.org/
wiki/Bugtraq), and a host of other com-
mon reference points.

8. The OSVDB supports multiple data-
base export formats (XML, SQLite,
MySQL and CSV) as well as a small Ruby
on Rails application that utilizes a
SQLite database export to give a user
their own local OSVDB instance.

Future Plans

The OSVDB is working towards the fol-
lowing objectives:

1. The OSVDB Vulnerability Disclosure
Framework, a service to help to improve,
streamline and, more importantly, re-
move the mystery and breakdowns in
the disclosure process. The framework
will assist researchers and vendors to
better coordinate disclosing vulnerabil-
ities.

2. A policy on the release of vulnerability
information which incorporates clear
guidelines on the timing of notification
to the product developer and of notifica-
tion to the open security community. In
addition, a formal statement of policy
for handling previously-unknown
(0-day, http://en.wikipedia.org/wiki/
Zero_day_attack) security vulnerabilities
and exploits, covering communications
with affected vendors as well as with the
security community.

3. Recruitment of more security profes-
sionals to maintain and extend the vul-
nerability database and formal recogni-
tion of contributors and identifying lead-

contributors to support organizations
underwriting their time and effort.

4. Active integration with vulnerability
tools to streamline the process of identi-
fying and setting priorities for the identi-
fied vulnerabilities. OSVDB will assist
tool developers to identify vulnerabilit-
ies that are not already represented in
their products, and will provide a way to
identify the high-priority vulnerabilities
for immediate attention.

5. The creation of a Vulnerability and
Patch Management Portal to create a
flexible framework that can provide
organizations with the ability to track
and manage vulnerabilities and patches.
OSVDB is looking to not only provide
information on vulnerabilities, but also
a service that can provide security pro-
fessionals a way to track and ensure that
vulnerabilities have been addressed at
their organization.

6. The OSVDB Training Portal Framework
will create a flexible framework that can
provide training on security issues. The
OSVDB aims to be a repository for train-
ing information that will help educate
end users on how to avoid security risks
and developers on how to avoid coding
insecure applications.

7. The OSVDB Port Listing Project will be
a central repository for all known ports
and protocols. This will be the founda-
tion for many new features such as refer-
encing ports and protocols to OSVDB
vulnerabilities. This will then allow the
OSVDB to be better mapped to firewall
rules, intrusion detection system (IDS)
alerts, and potential integrations to
other security projects.

http://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
http://en.wikipedia.org/wiki/Bugtraq
http://en.wikipedia.org/wiki/Zero_day_attack

OPEN SOURCE VULNERABILITY DATABASE

8. Long term sponsorship to provide addi-
tional services and an improved dataset.

Conclusion

The OSVDB provides an important ser-
vice for the security community by main-
taining and propagating an open, freely
available database of security vulnerabil-
ities. As Stewart Brand said, "information
wants to be free". This is doubly true for
security information, which can protect
network users and organizations from
harm. The project is already significant to
the world security community, and it will
increase in importance as its contents
grow and as it adds features and services
over time.

The OSE a non-profit organization which
oversees the operations of the OSVDB,
was setup as an umbrella organization to
support open source security projects.
Another project that continues to provide
value to the community is the Dataloss
DB (DLDQOS, http://attrition.org/
dataloss/dldos.html), run by Attrition.org
since July 2005. It will be formally main-
tained as an ongoing project under OSE
The DLDOS project's core mission is to
track data loss and data theft incidents--
whether confirmed, unconfirmed, or dis-
puted--not just from the United States,
but across the world. As of June 4, 2008,
DLDOS contains information on over
1,000 breaches of personal identifying in-
formation covering over 330 million re-
cords.

This article is based upon the whitepaper
entitled OSVDB Aims. The original white-
paper is available in HTML and PDF at
the OSVDB website (http://osvdb.org/
documentation,).

Jake Kouns is the co-founder and Presid-
ent of the Open Security Foundation (ht-
tp:/lwww.opensecurityfoundation.org/)
which oversees the operations of the Open
Source Vulnerability Database (OSVDB).
Kouns' primary focus is to provide man-
agement oversight and define the strategic
direction of the project. He holds a Bachel-
or of Business Administration with a con-
centration in Computer Information
Systems and a Master of Business Adminis-
tration with a concentration in Informa-
tion Security from James Madison
University.

Recommended Resources

Requirements and Approaches for a
Computer Vulnerability Data Archive
http://www.blackmagic.com/ses/
bruceg/workshp.html

Sharing Vulnerability Information Usinga
Taxonomically-Correct, Web-Based
Cooperative Database
https://www.cerias.purdue.edu/papers/
archive/2001-03.pdf

Data Mining in Vulnerability Databases|
http://www.ito.tu-darmstadt.de/publs/
pdf/sdb-dfn-cert-eng.pdf

http://osvdb.org/documentation
http://attrition.org/dataloss/dldos.html
http://www.blackmagic.com/ses/bruceg/workshp.html
http://www.cerias.purdue.edu/papers/archive/2001-03.pdf
http://www.ito.tu-darmstadt.de/publs/pdf/sdb-dfn-cert-eng.pdf

"In programming, as in everything else, to
be in error is to be reborn."

AlanJ. Perlis, first recipient

of Turing Award

On May 20, 2008, static analysis tool
vendor Coverity released a report entitled
"Open Source Report 2008"
(http://scan.coverity.com/report/). The
report includes information gathered
over the first two years of the Coverity
Scan project which was developed as part
of a contract from the US Department of
Homeland Security. Coverity provides its
analysis tools to open source projects in
order to identify quality and security
flaws in the codebases. Once identified,
the developers of the open source pro-
jects are given the information in order to
facilitate hardening of the software.

The report includes information about
the progress made by various projects us-
ing the Scan service. Additionally, the
Scan databases constitute one of the
largest and most diverse collections of
source code to be built and analyzed
while tracking changes to those code
bases over a two-year period. This data
provides a substantial set of samples for
considering some questions about the
nature of software. The report investig-
ates relationships between codebase size,
defect counts, defect density, function
lengths, and code complexity metrics.
This article highlights some of the results
from the report.

Data Used in the Report

Software has become a larger part of our
lives over the last few decades. Whether
on a desktop computer, or in systems we
use like bank machines and automobiles,
there are few people left who don't inter-
act with software on a daily basis. Flaws
in software can lead systems to misbe-
have in ways that range from simply an-
noying to life-threatening.

10

COVERITY REPORT

Yet, although software plays such a ubi-
quitous and critical role in daily life, there
are still many unanswered questions
about how to develop good software and
how to measure the quality of software.

Coverity is a software vendor that devel-
ops tools to automatically identify flaws
in source code. While normally sold to
commercial software developers, the US
Department of Homeland Security con-
tracted Coverity to analyze open source
software (OSS) and provide the results to
open source developers so that they
could fix the defects that were identified.

Coverity's "Open Source Report 2008", in-
cludes a sampling of some of the data col-
lected since the launch of the project in
March of 2006. The information in the re-
port falls into a number of different cat-
egories. There is data about the degree of
improvement and regression in quality
by the open source projects using the
Scan site. There is data about the fre-
quency of different types of defects iden-
tified by the analysis and information
about the consequences of each type of
defect. There are statistical correlations
between various measurements of the
software projects that are being tracked
and statistics about the proportion of de-
fects where the developers determined
that the analysis tool was incorrect when
it claimed there was a defect.

The data in the report is based on open
source projects which add up to 55 mil-
lion lines of code. In over 14,000 build
and analysis sessions over two years, al-
most 10 billion lines of code were run
through the analysis engine. In addition
to looking for defects, the analysis retains
information about the code itself, such as
the names and numbers of functions and
their lengths, the files that comprise the
various projects, and the calculated com-
plexity metrics.

http://scan.coverity.com

Commercial software is not usually avail-
able for analysis on an ongoing basis
such as that performed in the Scan pro-
ject. Commercial developers often do not
release their source code, and when they
do, it is typically in the form of a specific
release version which usually receives a
thorough vetting before its public release.

In contrast, open source projects make
their source code available in a public
version control system. Anyone who is in-
terested can track the changes that the
developers make day by day. This
provides a visibility into the software de-
veloper process that would not exist
without open source principles.

When a large number of projects are
viewed together, the result is a sample set
of data that can begin to answer many
questions about the nature of software.

COVERITY REPORT

Knowing the answers to these initial
questions allows us to begin to formulate
more sophisticated questions for future
efforts to pursue.

Report Findings

Defect densities are measured in number
of defects per 1,000 lines of code. Over
the two years from March 2006 to March
2008, the average defect density in the
projects being monitored dropped from
0.30 defects per thousand lines of code to
0.25, or from roughly 1 defect per 3,333
lines of code to one defect per 4,000 lines
of code. This represents an overall im-
provement of 16%. Figure 1 shows the
change in defect density.

Figure 1: Change in Defect Density

Change in Defect Density Across All Open Source Projects

0.6

0.5

0.4

0.3

0.2

0.1

0.0

CHANGE IN DEFECT DENSITY

110 112 114 116 118 120

1357 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

-0.1 INDIVIDUAL PROJECT IMPROVEMENT

11

A statistical correlation was performed to
compare defect densities and average
function length in each project. The con-
fidence factor found was 1.49%, where
confidence factors can range from 0% to
100%. Data included in the report show
no correlation between defect density
and average function length. Since best
practices often stipulate that long func-
tions should be re-factored into multiple
smaller functions, support for that prac-
tice would be demonstrated if the data
showed a correlation of higher defect
densities with longer average function
lengths. While there may be advantages
to re-factoring to assist in code maintain-
ability, shorter functions do not seem to
guarantee improvements in defect dens-
ity. Figure 2 shows the relationship
between defect density and function
length.

COVERITY REPORT

An additional correlation was performed
between codebase size in lines of code,
and number of defects identified. A com-
monly repeated statement is that soft-
ware complexity grows as project sizes
grow, but to an exponential extent. That
is, it is often asserted that adding addi-
tional code to a project adds complexity
due to all of the interactions with the ex-
isting code.

The codebase size and defect count cor-
relation was 71.9%, which indicates that
the increase in defect count is largely lin-
ear with the growth in number of lines of
code. If the increase in complexity leads
to more defects, and more frequent de-
fects, then a linear correlation ought to
be much lower than the nearly 72% fig-
ure.

Figure 2: Static Analysis Defect Density and Function Length

Static Analysis Defect Density and Function Length

1.400 .
]

1.200 ""
F ™ . []
=
:-; 1,000 .
= ™ .h-l - W
= 0.800 o
- -
B 0.600 s o?t
fm &

g *e
400 ".}1.;_'- s i

o® S
FE™ .
0,200 J .d
L ! ag i
[]
0.000 29 M
0 50 100

200 250 F0Hh 350

AVERAGE FUNCTION LENGTH

This appears to indicate that writing
1,000 additional lines of code to be added
to a large codebase (say, over 1 million
lines) is no more difficult or error prone
than writing 1,000 lines of code to be ad-
ded to a small codebase.

This finding has the potential benefit of
alleviating a concern about software de-
velopment. It has been speculated that
software applications will become so
large that they will become literally un-
manageable. While there may be other as-
pects and limitations to the management
of large projects, there does not appear to
be an upper limit on project size causing
defects to be created at an unmanageable
rate.

COVERITY REPORT

Comparisons are made in the report
between codebase size and the calcu-
lated complexity metrics for each code-
base. Cyclomatic complexity is an
algorithm for measuring the number of
independent paths through a piece of
source code (http://en.wikipedia.org/
wiki/Cyclomatic_complexity). The total
cyclomatic complexity of an application
was found to correlate almost 92% to the
number of lines of code in an applica-
tion. This implies that calculating the
complexity metric for a codebase may tell
you more about how much code you
have than about its complexity. Figure 3
shows the correlation between complex-
ity and lines of code.

Figure 3: Cyclomatic Complexity and Line of Code

‘:}'E IU]IIﬂTiE Eump]cxit}' i.ll'l-ll Lil’ll:‘ti ﬂr{:ﬂdt‘

ﬂ D010
=
5 A00 000
=
5 700 000
i
= 00,000
: L
= 500,000
=
o 400 000
¥
300,000
=
- 200,000 . ™
= L
= 100,000 by
= L]
J L]

0 j

o T CHO hy ECe) De0

3000000

000,000 5 000,000 6,000,000

LINES OF CODE

13

http://en.wikipedia.org/wiki/Cyclomatic_complexity

Since the complexity metric is so strongly
related to codebase size, it may be im-
portant to double-check one's assump-
tions about the meaning of complexity
metrics and determine whether the way
in which they are being used is appropri-
ate, given the information they convey.

When discussing the results of the report,
there is a common desire to draw com-
parisons between open source code qual-
ity and commercial source code quality.
While this issue is addressed in the re-
port, it is not answered. The lack of avail-
ability of a wide sample set of
commercial source code may make it im-
possible to ever perform an analysis sim-
ilar to that done for open source code in
the released document.

The report also includes information
about the rate of false positives identified
in the analysis by developers looking at
the results for their codebases. The false
positive rate is an important metric for
any static analysis tool, because some
portion of the analysis is constrained by
information that will only be available at
runtime. Any tool performing static ana-
lysis will identify some issues that cannot
happen at runtime, and will fail to identi-
fy some issues that can. The critical factor
is the degree to which a tool identifies
code defects that are valuable to resolve,
while not reporting so many false issues
that developers become frustrated with
the inaccuracy of the tool. To date, de-
velopers have identified only 13.32% of
the results in the Scan project as false
positives.

Finally, the report concludes with appen-
dices covering the specific statistical
methods applied to the data, and addi-
tional details about the consequences of
the various types of defects identified in
the code that was examined.

14

COVERITY REPORT

Conclusion

It is expected that feedback from readers
of the report will drive deeper investiga-
tions into the available data, which may
uncover further interesting trends in the
nature of software development.

Coverity intends to issue updated reports
on an annual basis, comparing year-over-
year trends, and overall progress by the
projects involved in the Scan. As updated
tools are made available to the open
source developers, the results will in-
clude new defect types and changes in
the overall distribution of defect type fre-
quencies.

David Maxwell is Coverity's Open Source
Strategist, and is tasked with the continu-
ation and expansion of Coverity's DHS-
sponsored open source scans. An open
source security specialist, Maxwell has
over 20 years of experience as an open
source user and developer, and he is par-
ticularly active in the NetBSD community.
He currently sits on the advisory board for
the BSD Certification Group and the pro-
gram committee for the annual BSDCan
conference. He was also a NetBSD Security
Officer from 2001-2005 and a contributor
to the best-selling O'Reilly title "BSD
Hacks." Maxwell has previously worked as
a lead kernel developer for Nokia, and ar-
chitected the Internet Service offering for
Fundy Cable in New Brunswick.

OSS SECURITY HARDENING OVERVIEW

"C is quirky, flawed, and an enormous suc-
cess."

Dennis Ritchie

http://cm.bell-labs.com/

cm/cs/who/dmr/index.html

In today’s computing world, security
takes an increasingly predominant role.
The industry is facing challenges in pub-
lic confidence at the discovery of vulner-
abilities and customers are expecting
security to be delivered out of the box,
even on programs that were not designed
with security in mind. Software maintain-
ers face the challenge to improve the se-
curity of their programs and are often
under-equipped to do so. Some are tak-
ing advantage of open source software
(OSS) as the availability of the source
code facilitates their validation and an-
swers their need for trustworthy pro-
grams. OSS are often implemented using
the C programming language (26% ac-
cording to SourceForge.net). This makes
it necessary to investigate the security is-
sues related to C.

This paper summarizes key concepts re-
lated to security hardening, and demon-
strates its applicability on the C language.
We also propose a progressive approach
to integrate security services and protec-
tion measures into existing software to ul-
timately make it more resistant against
cyber-attacks. Given our ever increasing
dependability on information technolo-
gies, it becomes critically important to
provide tools to maintainers that will fa-
cilitate and accelerate the security
hardening process, increasing the effect-
iveness of the effort and lowering the re-
sources required to do so.

Software Security Hardening

Security hardening of software is an in-
formal term, but the technical com-
munity considers it to be an iterative
process to progressively implement se-
curity services and protection measures.

15

The process starts with the basic software
that has being designed and implemen-
ted to offer some functionality as typic-
ally defined by use cases. As a first step
toward better protection of data, security
services are introduced to implement fea-
tures associated with authentication, ac-
cess control, confidentiality, and
integrity. These services are typically de-
scribed via security use cases. However,
this is not sufficient. It is often necessary
to define misuse cases to protect the soft-
ware against users' mistakes and other er-
rors that could happen in any system
operated by humans in a complex execu-
tion environment. Moreover, it is often re-
quired to test software against abuse
cases that model deliberate attacks that
could be encountered in a hostile envir-
onment. Depending on the criticality of
the system being designed, it may be ne-
cessary to harden the key components to
the highest level, including security ser-
vices and protection measures against
misuses or deliberate attacks. Some other
less critical components can only be
hardened to a lower level.

In practice, the risk analysis may lead to
changes in the source code, the develop-
ment process, the overall design, or even
the operating environment itself as de-
scribed in the following classification of
security hardening methods:

Code-level hardening implies changes in
the source code in a way that prevent vul-
nerabilities without altering the design.
Some vulnerabilities are a direct result of
the programming activities and code
level hardening removes these vulnerabil-
ities in a systematic way.

Software process hardening is the replace-
ment of the development tools and com-
pilers, the use of stronger
implementations of libraries, and the exe-
cution of complementary test suites
which implement security scenarios.

http://cm.bell-labs.com/cm/cs/who/dmr/index.html
http://sourceforge.net

OSS SECURITY HARDENING OVERVIEW

Design-level hardening consists of the re-
engineering of the application in order to
integrate security features that were ab-
sent or insufficient. Some security vulner-
abilities cannot be resolved by a simple
change in the code or by a better environ-
ment, but are due to a fundamentally
flawed design. This category of hardening
practices targets more high-level security
such as access control, authentication
and secure communication. In this con-
text, best practices and security design
patterns can be redirected from their ori-
ginal intent and used to guide the re-
design effort.

Operating environment hardening stands
for improvements to the security of the
execution context (network, operating
systems, libraries, etc.) that the software
relies upon. Those changes typically
make exploitation of vulnerabilities
harder, although they do not remedy
them.

The spectrum of changes that may be re-
quired is very broad and security analysts
usually take two complementary per-
spectives to address key security issues.
Typically, analysts prefer to start with the
high-level perspective before engaging in-
to code changes or other low-level secur-
ity issues.

High-Level Perspective

From the high-level perspective, the at-
tention will be put on design-level
hardening and on the relationship that
the system has with its operating environ-
ment. The goal is to identify more pre-
cisely the threats, to evaluate the real
risks, and to propose countermeasures.

Identifying threats is an important task in
security hardening since we need to de-
termine which threats require mitigation
and how to mitigate them, preferably by
applying a structured and formal mech-
anism or process.

16

As such, the following is a brief descrip-
tion of the three main steps needed to
identify and evaluate the risk of a threat:

1. Application decomposition divides the
application into its key components in
order to identify their trust boundaries.
This decomposition helps to minimize
the number of threats that need mitiga-
tion by excluding those that are outside
the scope and beyond the control of the
application.

2. Threat identification categorizes
according to the six known categories
presented by Howard and LeBlanc:
spoofing identity, tampering with data,
repudiation, information disclosure,
denial of service and elevation of priv-
ilege (http://www.microsoft.com/
mspress/books/5957.aspx).

3. Risk evaluation is needed to determine
the priority of threats to be mitigated.

Once the previous steps are completed
and the threat is well identified and cat-
egorized, it is possible to determine the
appropriate mitigation technique(s). It is
possible to find mappings between the
categories of threats and known counter-
measures. Howard and LeBlanc provide a
list of mitigation techniques for each cat-
egory of threats within their classification.

For example, against the threat of spoof-
ing identity, they recommend using ap-
propriate authentication and to protect
secret data; against information disclos-
ure, they recommend using authoriza-
tion and encryption. Regarding the
deployment of these techniques into ap-
plications and systems, security patterns
are useful to choose the best techniques
available, and guide their implementa-
tion.

http://www.microsoft.com/mspress/books/5957.aspx

0SS SECURITY HARDENING OVERVIEW

Low Level Perspective

From the low-level perspective, the atten-
tion will be on the source code itself and
on the methodologies (tools and tech-
niques) used to build software systems.
Software analysts often use automated
tools to find the software constructs that
are problematic or exploitable in an at-
tack scenario. Some tools use static code
analysis (http://en.wikipedia.org/wiki/
Static_code_analysis) to find potential
implementation flaws. It may be neces-
sary to complement the security analysis
of the code with a run-time tester.

When code review is performed, it is im-
portant to evaluate the impact of a soft-
ware defect because it may result in a real
vulnerability that will represent an ex-
ploitable weakness. Even though many
tools exist to help identify vulnerabilities,
no tools are perfect. Some tools are good
at certain types of defects while others
may simply miss them. False positive dia-
gnostics are often the most difficult prob-
lem software analysts encounter.
[Editor's Note: readers interested in the
findings of research into this subject will
find details in the article Language
Insecurity.]

Notorious Vulnerabilities in the C
Language

In this section, some major safety vulner-
abilities of C programming are presented
along with the hardening techniques
used to remedy them at different levels.
They are recognized as being among the
most notorious source of problems in
software security and reliability. They il-
lustrate the multi-layer approach that is
needed to cope with them in a rigorous
manner.

1. Buffer overflows exploit common pro-
gramming errors that arise mostly from
weak or non-existent bounds checking
of input being stored in memory buffers.
Buffers on both the stack and the heap
can be corrupted. Many APIs (applica-
tion programming interfaces) and tools
have been deployed to solve the prob-
lem of buffer overflow or to make its
exploitation harder. Table 1 summarizes
the security hardening solutions for
buffer overflows.

Table 1: Hardening for Buffer Overflows

Hardening Level

Product/Method

Code: Bound-checking, memory manipulation functions with length
parameter, ensuring proper loop bounds, format string
specification, user’s input validation

Software Process:

Compile with canary words, inject bound-checking aspects

Design: Input validation, input sanitization

Operating Environment: Disable stack execution, use libsafe (http://directory.fsf.org/
project/libsafe/), enable stack randomization

http://en.wikipedia.org/wiki/Static_code_analysis
http://directory.fsf.org/project/libsafe/

0SS SECURITY HARDENING OVERVIEW

2. Integer security issues are caused by 3. Hardening for memory management
converting between signed and un- vulnerabilities. The C programmer is in
signed, sign errors, truncation errors charge of pointer management, buffer
and overflow and underflow. Those vul- dimensions, allocation and de-alloca-
nerabilities can be solved using sound tion of dynamic memory space, all of
coding practices and special features in which may cause memory corruption,
some compilers such as replacing unauthorized access to memory space,
integer operations with safer calls. The and buffer overflows. Security hardening
security hardening solutions for such solutions against such problems are
problems are summarized in Table 2. summarized in Table 3.

Table 2: Hardening for Integer Vulnerabilities

Hardening Level

Code:

Software Process:

Product/Method

Use of functions detecting integer overflow/underflow, migration
to unsigned integers, ensuring integer data size in
assignments/casts

Compiler option to convert arithmetic operation to error
condition-detecting

Table 3: Hardening for Memory Management Vulnerabilities

Hardening Level

Code:

Software Process:

Operating Environment:

Product/Method

NULL assignment on freeing and initialization, error handling on
allocation, pointer initialization, avoid null dereferencing

Using aspects to inject error handling and assignments, compiler
option to force detection of multiple-free errors

Use a hardened memory manager (e.g. dmalloc, phkmalloc)

18

0SS SECURITY HARDENING OVERVIEW

4. File management errors can lead to
many security vulnerabilities such as
data disclosure, data corruption, code
injection and denial of service. Unsafe
temporary files and improper file cre-
ation access control flags are two major
sources of vulnerabilities in file manage-
ment.

In some cases, we can redesign the
application to use inter-process commu-
nication instead of temporary files. The
security hardening solutions for such
problems are summarized in Table 4.

Table 4: Hardening for File Management Vulnerabilities

Hardening Level

Code:

Product/Method

Use proper temporary file functions, default use of restrictive file

permissions, setting a restrictive file creation mask, use of ISO/IEC
TR 24731 functions

Software Process:
Design:

Operating Environment:

Learning More

We introduced the concept of software se-
curity hardening and a classification for
hardening methods. It is hoped that it
will guide developers and maintainers in
deploying and hardening security fea-
tures and to remedy vulnerabilities
present in existing OSS. More high qual-
ity information is available on security
vulnerabilities and on the techniques
used to mitigate them. We recommend
some key resources to address security
concerns in existing software, including
the US Department of Homeland Secur-
ity portal that is the most comprehensive
reference for software security issues.

19

Set a wrapper program changing file creation mask
Redesign to avoid temporary files

Restricting access rights to relevant directories

As a general advice, the scientific com-
munity recommends to look for OSS im-
plemented in modern languages such as
Java, C# .NET, Ada, SPARK, and CAML.
These offer much better security than old
programming languages like C and C++
that are deficient in terms of type safety
and rigorous memory management. In
all cases, well-recognized and well-sup-
ported implementations provide better
building blocks since they are constantly
improved to match the ever increasing
risk encountered in the modern cyber en-
vironment.

0SS SECURITY HARDENING OVERVIEW

Acknowledgments

This research is the result of a fruitful col-
laboration between the computer secur-
ity Laboratory of Concordia University,
Defense Research and Development
Canada at Valcartier, and Bell Canada
thanks to a grant under the NSERC/DND
Research Partnership Program.

This article is based on work originally
presented at the 2006 International Con-
ference on Privacy, Security and Trust
which was hosted by the University of
Ontario Institute of Technology.

Recommended Resources

Secure Coding in C and C++
http://www.cert.org/books/
secure-coding/

Secure Programming for Linux and Unix
HOWTO

http://www.dwheeler.com/
secure-programs/

DHS Software Security Portal
https://buildsecurityin.us-cert.gov/
daisy/bsi/home.html

Common Vulnerabilities and Exposures
http://www.cve.mitre.org

Common Attack Patterns
http://capec.mitre.org

Environnemental Issues
http://nob.cs.ucdavis.edu/bishop/
secprog/sans2002/index.html

Web Application Security
http://www.webappsec.org

20

Robert Charpentier completed his degree
in engineering physics at l'Ecole Polytech-
nique de Montreal in 1979. After working
at CAE Electronics on flight simulators, he
joined Defence Research Establishment
Valcartier, where he specialized in infrared
imagery and space-based surveillance. His
current research domain is software secur-
ity design and attack resistance of inform-
ation systems operated in hostile
environment. He has been deeply involved
in F/LOSS studies since 2003.

Mourad Debbabi is full professor and act-
ing director at the Concordia Institute for
Information Systems Engineering. He is
Concordia University Research Chair Tier
I and Specification Lead for four Java Spe-
cification Standards. He received his Ph.D.
in Computer Science from Paris XI Orsay
University and worked as senior scientist
for PINTL Laboratory and General Electric
Corporate Research before joining Concor-
dia University in Montréal.

Azzam Mourad is a PhD Student at Con-
cordia University. His research and devel-
opment thesis is on the automation of
security hardening of open source soft-
ware based on the Aspect-oriented pro-
gramming paradigm.

Marc-André Laverdiere did his MScA at
Concordia University on security design
appicable to open source software. He cur-
rently works in India.

http://www.cert.org/books/secure-coding/
http://www.dwheeler.com/secure-programs/
https://buildsecurityin.us-cert.gov/daisy/bsi/home.html
http://www.cve.mitre.org
http://capec.mitre.org
http://nob.cs.ucdavis.edu/bishop/secprog/sans2002/index.html
http://www.webappsec.org

“There are two ways of constructing a soft-
ware design. One way is to make it so
simple that there are obviously no defi-
ciencies. And the other way is to make it so
complicated that there are no obvious defi-
ciencies.”

Professor C. A. R. Hoare

Developing reliable and secure software
has become a challenging task, mainly
because of the unmanageable complexity
of the software systems we build today.
Software flaws have many causes, but our
observations show that they mostly come
from two broad sources: i) design, such
as a malicious or unintentional back-
door; and ii) implementation, such as a
buffer overflow (http://en.wikipedia.org/
wiki/Buffer_overflow).

To address these problems, our research
group at Defence Research and Develop-
ment Canada (DRDC) Valcartier first
worked on design issues. A prototype of a
UML (http://en.wikipedia.org/wiki/
Unified_Modeling Language) design veri-
fier was built. Our approach was success-
ful, but we faced two difficulties: i)
specifying interesting security properties
at the design level; and ii) scalability of
the verification process.

Building on this experience, we studied
design patterns for the implementation
of security mechanisms. The output was
a security design pattern catalog, avail-
able from the authors, which can help
software architects choose mature and
proven designs instead of constantly try-
ing to reinvent the wheel.

This paper addresses the implementation
issues from our evaluation of currently
available automatic source code verifiers
that search for program sanity and secur-
ity bugs.

21

LANGUAGE INSECURITY

From this evaluation, it becomes clear
that the choice of programming language
to use when starting an open source pro-
ject can have many important con-
sequences on security, maintainability,
reliability, speed of development, and col-
laboration. As a corollary, software quality
is largely dependent on the adequacy of
the programming language with respect
to the desired properties of the system de-
veloped. Therefore, the adoption of open
source software (OSS) should consider
the programming language that was used.

Context & Terminology

The assurance level required for execut-
ing applications depends on their execu-
tion context. Our context is military, in
which confidential data is processed by
sensitive applications running on wide-
spread operating systems, such as Win-
dows and Linux, and mostly programmed
in C/C++ and Java. Our primary goal was
to get rid of common security problems
using automated source code verification
tools for C++ and Java. To do so, we first
investigated errors and vulnerabilities
emerging from software defects. This al-
lowed us to create meaningful tests in or-
der to evaluate the detection
performance and usability of these tools.

In our investigation of common software
security problems, we observed that most
do not come from the failure of security
mechanisms. Rather, they occur from fail-
ures at a lower level, which we call pro-
gram sanity problems. Security
mechanisms ensure high level properties,
such as confidentiality, integrity, and
availability, and are mostly related to
design. Access control frameworks, intru-
sion prevention systems, and firewalls are
all examples of security mechanisms. Pro-
gram sanity problems are related to pro-
tected memory, valid control and data
flow, and correct management of re-
sources like memory, files, and network
connections.

http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Unified_Modeling_Language

Because these problems are many-sor-
ted, a terminology is necessary to classify
them. An error is closely related to the ex-
ecution of a program and occurs when
the behavior of a program diverges from
“what it should be”; that is, from its spe-
cification. A defect lies in the code and is
a set of program instructions that causes
an error. A defect can also be the lack of
something, such as the lack of data valid-
ation. Finally, a vulnerability is a defect
that causes an error that can be voluntar-
ily triggered by a malicious user to cor-
rupt program execution.

LANGUAGE INSECURITY

We focused on errors, defects, and vulner-
abilities that can have an impact on secur-
ity. To be as general as possible, we
wanted them to be application-independ-
ent. We defined five errors, twenty-five
kinds of defects across six categories, and
three vulnerabilities, as shown in Figure 1.

The list of possible low-level errors that
can happen when a program is executed
is very long. Since we had no interest in
the correctness of computations with re-
spect to specifications, we focused on
general errors that can interfere with cor-
rect memory management, control flow,
and resource allocation.

Figure 1: Errors, Defects, and Vulnerabilities

Defects

Userin
Control of
Format String

Overruns of
Arrays and
Iterators

Pointer
Problems

Errors

Memory Incorrect Use of .
: g T Silent
Management Arithmetic Uninitialized Errors
Problems Expressions Variables

Memory Read
Out of Bounds

Memory Write
Out of Bounds

Vulnerabilities

Access

Unauthorized

Resource Leak

Program Crash

Program Hang

Arbitrary Code
Execution

22

Denial of Service

Types of low-level errors include:

* memory write out of bounds: a valid
region of memory is overwritten which
results in serious vulnerabilities since
it can allow an attacker to modify the
program state

e memory read out of bounds: a region of
invalid memory is read, resulting mostly
in errors in computations, but sensitive
values could be read

e resource leak: a discardable resource
such as memory, a file handle, or a
network connection is not returned to
the available pool which will generally
lead to a slowdown or crash of the
resource-starved program

 program hang: the program is in an
infinite loop or wait state, which gener-
ally leads to a denial of service

e program crash: an unrecoverable error
condition happens and the execution of
the program is stopped, leading to a
denial of service

Most defects will not always generate er-
rors for every execution of the program.
Complex conditions have to be met for
the error to happen and input values play
an important role. Furthermore, many
defects are composite and cannot be at-
tributed to only one program instruction.
The following is a list of the type of de-
fects we used to create our tests:

* memory management faults: problems
related to memory allocation,
deallocation, and copy from one buffer
to another

e overrun and underrun faults: problems
related to the overrun or underrun of an
array or a C++ iterator

23

LANGUAGE INSECURITY

e pointer faults: problems related to
incorrect pointer usage

e cast faults: problems related to the
incorrect cast of one type into another

* miscellaneous faults: problems that do
not fit into any other category

Errors in general are undesirable, but the
real problem is vulnerabilities, especially
remotely-exploitable ones. We observed
that almost all dangerous vulnerabilities
are associated with memory reads or
writes out of bounds. Vulnerabilities can
be classified as:

¢ denial of service: allows an attacker to
prevent user access to an appropriate
service

e unauthorized access: allows an attacker
to access functionalities or data without
the required authorization

e arbitrary code execution: allows an
attacker to take control of a process by
redirecting its execution to a given
instruction

Problems with C/C++ Programs

Many defects and errors are possible be-
cause of bad design choices when the C
and C++ programming languages were
created. These languages require micro-
management of the program’s behaviour
through memory management, are error-
prone due to pointer arithmetic, and in-
duce serious consequences to seemingly
benign errors such as buffer overflows. A
short list of the major C/C++ design short-
comings follows:

* lack of type safety: type-safe programs
are fail-fast as their execution is stopped
immediately when an error occurs
whereas non type-safe languages like
C/C++ let the execution of erratic
programs continue

e static buffers: buffers in C/C++ cannot
grow to accommodate data, buffer
accesses are not checked for bounds,
and overflows can overwrite memory

e lack of robust string type: C has no
native type for character strings, mean-
ing static buffers with potential overflow
problems are used instead; while C++
programs can use a string type, our
observations show that this is rarely the
case

Creators of modern languages, such as
Java, had these problems in mind and ad-
dressed them. Indeed, Java is immune to
C/C++ program sanity problems because
runtime checks throw an exception if an
error occurs. However, many program
sanity checks throw unchecked excep-
tions and these are rarely caught by pro-
grammers. Many problems become
denial-of-service vulnerabilities since un-
caught exceptions crash the program.

Tools Evaluation

We evaluated 27 tools for C/C++ and 37
for Java. All these tools were categorized
into three families: i) program conform-
ance checkers; ii) runtime testers; and iii)
advanced static analyzers.

Program conformance checkers perform a
lightweight analysis based on syntax to
find common defects. Because of this un-
sophisticated analysis, they perform
poorly, except for a few defects that can
be detected by simple syntax analysis.
Many free tools were in this category.

Runtime testers look for errors while the
program is running by instrumenting the
code with various checks. This provides a
fine-grained analysis with excellent
scalability that can be very helpful when
the program’s behaviour cannot be com-
puted statically because of values that are
not known before runtime.

24

LANGUAGE INSECURITY

Advanced static analyzers work on pro-
gram semantics instead of syntax. They
generally use formal methods, such as ab-
stract interpretation or model-checking,
which often lead to scalability problems.
The code must be compiled into a model
and this is usually complex with C/C++
because of code portability problems
between compilers.

Our results can be summarized as:

e for C/C++, commercial tools are by far
the best

e for Java, there are many good free tools

* since Java is immune to most program
sanity problems that plague C/C++,
there are no exact equivalents to C/C++
tools

» the focus of Java tools is on good prac-
tices and high level design problems

Since our goal was to detect program san-
ity problems, we focused on tools for
C/C++ during our evaluation. For our
evaluation, our criteria were: i) precision
in flaws detected vs. false positives; ii)
scalability from small to large programs;
iii) coverage or the inspection of every
possible execution; iv) and the quality of
the diagnostic report in its usefulness for
problem correction.

Preliminary tests showed that only three
tools for C/C++ had the potential to help
us achieve our goal: Coverity Prevent
(http://www.coverity.com) and PolySpace
for C++ (http://www.mathworks.com) for
detecting defects, and Parasoft Insure++
(http://www.parasoft.com) for detecting
errors. We tested these tools in two ways:
i) over real code in production that, to the
best of our knowledge, worked well but
was a bit buggy; and ii) over many small
ad-hoc pieces of code (synthetic tests)
containing specific programming defects.

http://www.coverity.com
http://www.mathworks.com
http://www.parasoft.com

To compare these tools, all results had to
be converted to errors or defects. For syn-
thetic tests, defects and the errors they
caused were known in advance so it was
easy to convert everything to defects.
However, for code in production, nothing
was known in advance, so we decided to
use the best result as a baseline. Since In-
sure++ was the best performer, all results
were converted to errors.

Results

The complete results of our synthetic
tests are available in the original paper.
The difficulties in testing C/C++ pro-
grams can be summarized as follows:

* no tool is able to detect every kind of
defect or error

e static analysis tools need good quality
code to perform well

e pointer arithmetic used to read from
and write to complex data structures
renders static analysis extremely
difficult

* makefiles are often show-stoppers due
to their lack of granularity, their number
makes debugging a tedious task, and
they are often complex and require
many dependencies

e compiler-specific extensions to C/C++
make the parsing of non-standard
extensions difficult

¢ the use of conditional compilation
using preprocessor directives which
come from a mix of environment vari-
ables, configuration files, and make
parameters adds to the complexity of
the verification process

¢ header files are often created or moved
by the makefile while it is running

25

LANGUAGE INSECURITY

* there are often many different header
files with the same name, but at different
locations

We found that having the verification tool
parse the program correctly is the most
difficult part of the job, and this is often a
show-stopper unless one has unlimited
time. Java is not problematic because it
has no preprocessor and no conditional
compilation. It has been designed to be
standard and portable.

Tool Limitations and Best Usage
Scenario

We found that current static verification
tools suffer from what we have called the
“black box problem”. Indeed, for reactive
applications and heterogeneous systems,
execution does not always take place in
available application code. For instance,
in reaction to a mouse click, a reactive ap-
plication can start executing in kernel
code to pass the event over and around
the operating system. This part of its exe-
cution can rarely be analyzed and, there-
fore, static analysis tools can hardly
determine what type of data comes out of
these calls. This prevents true interpro-
cedural analysis.

Scalability is also a problem for static
tools that have to consider (and abstract)
all possible executions.

Dynamic tools have the opposite prob-
lem: they are very scalable but provide
poor coverage with poor test cases.
However, if you consider the number of
tests needed to cover all possible execu-
tions with dynamic tools, scalability is
still a problem.

The best usage scenario for Coverity Pre-
vent is when the whole application needs
to be analyzed and it is compiled using a
working makefile. The application code
size can be over 500K lines of C++ without
problems.

Coverity has many good points: i) very
good integration with makefiles; ii) uses
the Edison compiler front-end that can
read code containing compiler-specific
extensions from almost every big com-
piler in the industry; iii) very scalable; iv)
excellent diagnostics with execution
traces that are easy to understand and
very helpful to correct problems; and iv)
uses an innovative, but proprietary, ana-
lysis based on statistical code analysis
and heuristics.

The best usage scenario for PolySpace for
C++ is to analyze small segments of critic-
al code in applications where runtime ex-
ceptions should never happen. The
application code size must stay under
20K lines of C++. It uses a very thorough
analysis based on abstract interpretation,
with which it can detect runtime errors
statically. It has a nice graphical interface,
especially the viewer module which is
used to analyze the report and navigate
the source code. However, it lacks a good
diagnostic because sometimes it is im-
possible to understand the defect found.

The best usage scenario for Parasoft In-
sure++ is to test hybrid systems based on
many heterogeneous components. To
consider code coverage, it should always
be integrated into test case harnesses
that have been shown to provide good
code coverage. Since Insure++ is a dy-
namic tool, there is no limit to the applic-
ation code size and bad quality code has
no effect on detection performance. In-
sure++ has a very good diagnostic with
call stack and memory diagrams that
show exactly what was overwritten.
However, as already mentioned, test
cases have to be carefully specified with a
good coverage strategy.

26

LANGUAGE INSECURITY

Discussion

We have alluded to the importance of
simple and unambiguously specified lan-
guage constructs, standardized, portable,
and type-checked language compilation,
vigilant runtime monitoring, and avail-
able verification tools. We argue that it is
simpler, though not simple, to produce
better quality software with modern pro-
gramming languages. We believe that
modern programming languages should
always be used over older ones, except
when a convincing argument can be
made against it.

Furthermore, programmers should use
the verification tools that are available for
their programming languages and should
stay aware of the new ones. In the selec-
tion of open source products, the pro-
gramming language used is, of course,
not the only variable to consider in assess-
ing software quality. But when evaluating
two products that have been properly
tested for appropriate and correct func-
tionality for the task at hand, we would re-
commend to choose the one
programmed with a modern language.

The computer industry tends to adopt
new technologies very quickly. Setting hu-
man and financial resources aside, the ad-
option of new programming languages
generally follows the laws of fashion: what
is the new best thing this year? what
should I use to stay cool and up-to-date?
This is not necessarily a bad driver of pro-
gress. However, it covers a pernicious
habit: we have rarely observed a program-
mer adopting a new programming lan-
guage because he knew all the pitfalls of
his current language and wanted to avoid
them.

Conclusion

The root of security problems are not the
failure of security mechanisms. C/C++
programs are especially problematic be-
cause they enforce almost no restriction
on the execution of programs and they
are prone to vulnerabilities with serious
consequences. However, modern lan-
guages, such as Java, are immune to
C/C++ problems and are not prone to
any serious vulnerability. Of course, just
as with any language, design must be rig-
orously verified and implemented cor-
rectly. The use of Java is not a panacea
and care should still be taken in the cor-
rect implementation of security mechan-
isms.

Verifying C/C++ programs is a huge chal-
lenge. These languages are very difficult
to analyze because of many undefined or
non-standard semantics, pointer arith-
metic, and compiler-specific extensions
to the language. We have found no cur-
rently available verification tool that can
reduce the risk significantly enough for
sensitive applications. We highly recom-
mend the use of modern programming
languages such as Java, which nullify pro-
gram sanity problems. However, if the
use of C/C++ is mandatory, we recom-
mend restricting its usage and the use of
serious test cases and verification tools.

27

LANGUAGE INSECURITY

This article is based upon a paper origin-
ally published in the Proceedings of the
Static Analysis Summit
(http://lsamate.nist.gov/docs/

NIST Special_Publication_500-262.pdf)

Frederic Michaud is a researcher special-
ized in software security including verifica-
tion and validation, defensive
programming, and robust architectures for
information systems operated in hostile
environments.

Frederic Painchaud is a defence scientist at
Defence Research and Development
Canada, Valcartier. His research interests
are language semantics, formal methods,
program analysis, and IT security.

http://samate.nist.gov/docs/NIST_Special_Publication_500-262.pdf

"Open, distributed innovation is attacking
a major structure of the social division of
labor. Many firms and industries must
make fundamental changes to long-held
business models in order to adapt."

Eric Von Hippel, MIT

On May 23, 2008, Stoyan Tanev from Car-
leton University delivered a presentation
entitled "Trends in Technology Market-
ing". This section provides the key mes-
sages from Dr. Tanev's lecture. Tanev's
lecture discussed current trends in tech-
nology innovation and marketing by fo-
cusing on the evolution of traditional
marketing concepts. The slides from the
presentation are available for download
(http://www.talentfirstnetwork.org/
wiki/images/d/db/Trends_in_
technology_marketing May_23.pdf).

The TIM Lecture Series provides a forum
that promotes the exchange of know-
ledge between university research and
technology company executives and en-
trepreneurs. Readers outside the Ottawa
area who are unable to attend the lec-
tures in person are invited to view up-
coming lectures in the series either
through voice conferencing or webcast.
Instructions for joining a lecture are avail-
able at http://tinyurl.com/5nhbc8.

Core Marketing Concepts

The first half of the lecture concentrated
on current trends in technology innova-
tion and marketing and described the
evolution of traditional marketing con-
cepts. Marketing strategy is changing in
response to higher customer information
access and increased global connectivity.

Current marketing strategies and their as-
sociated business model implications are
a result of the emerging paradigm of
value co-creation networks. The design of
offerings based on value co-creation is
considered as the next practice in value
creation.

28

T LECTURES

Aspects of the evolving marketing trends
include:

e product support and company reputa-
tion are important for customers making
buying decisions

e product leadership and customer intim-
acy are important for crossing the chasm
(http://en.wikipedia.org/wiki/
Crossing_the_Chasm)

e the ambiguity in technology markets
requires different marketing strategies

e advertising should not communicate
complex messages

* a strategy that works in one stage of the
product life cycle may not work in anoth-
er stage; using the same strategy may
result in failure

e value chains can be parallel as well as
serial

Co-Creation Paradigm

The second half of the lecture further ex-
plored the value that can be created
through co-creation with one's user base.
As in any value proposition, how to appro-
priate value isn't obvious. While techno-
logy plays a critical role in value creation,
value is created not through a product's
features but by its ability to get a job
done. It is difficult for some marketers to
grasp the new reality that value creation is
made possible by cooperating with com-
plementors and is enabled by transpar-
ency. It should also be noted that some
vertical value chains have many layers
and how you differentiate depends on the
complexity of the value chain.

Traditional marketing techniques focus
on planning whereas co-creation allows
others to take advantage of opportunities.

http://www.talentfirstnetwork.org/wiki/images/d/db/Trends_in_technology_marketing_May_23.pdf
http://tinyurl.com/5nhbc8
http://en.wikipedia.org/wiki/Crossing_the_Chasm

In other words, the new marketing trend
is all about creating a path to your
product via pull methods instead of push.
This section also offered insights into cus-
tomers:

e customer satisfaction is multidimen-
sional and based on experience rather
than price

e customer involvement builds trust in
your brand

* marketing can't satisfy a customer's
need (promise vs. product)

There was some discussion regarding the
phenomena that user experience does
not necessarily mean co-creation. An ex-
ample is a user that merely consumes Ex-
pedia's services as opposed to leaving
comments--which creates value--for oth-
ers to use. Even though there isn't direct
value creation from a passive consumer,
these types of consumers also provide
value in that they represent traffic and ex-
posure to one's services.

A final key message is that co-opetition
(http://en.wikipedia.org/wiki/
Co-opetition) can offer end-to-end ser-
vices, something that is rarely achievable
by one company.

Stoyan Tanev is an Assistant Professor in
the Department of Systems and Computer
Engineering at Carleton University. He re-
ceived a joint Ph.D. from the University of
Sofia and the Université Pierre and Marie
Curie. His research interests include open
source innovation strategies in non-soft-
ware sectors, management of innovation
in new, emerging and cross-disciplinary
technology areas, and biomedical optics
and nanophotonics design and simula-
tion tools.

29

T LECTURES

Recommended Reading

Marketing in the 21st century
http://myphliputil.pearsoncmg.com/
student/kotler6/REV01.PDF

Democratizing Innovation
http://web.mit.edu/evhippel/www/
democl.htm

"...communities are living organisms that
are most analogous to gardens; they must
be tended to, cultivated, and fertilized if
they are to take root, grow and thrive."
Mark Sigal
http://thenetworkgarden.com/weblog/
2008/03/online-communit.html

On June 4, 2008, Ian Skerrett from the Ec-
lipse Foundation delivered a presentation
entitled " Building Technical Communit-
ies". This section provides the key
mssages from Ian's lecture. lan used his
observations of working in the Eclipse
community to explain why community
building is important, its critical ele-
ments, and how the traditional roles with-
in an organization relate. The slides from
the presentation are available for down-
load (http://www.talentfirstnet
work.org/wiki/images/6/69/Building
technical_communities_June_4.pdf).

http://myphliputil.pearsoncmg.com/student/kotler6/REV01.PDF
http://web.mit.edu/evhippel/www/democ1.htm
http://thenetworkgarden.com/weblog/2008/03/online-communit.html
http://en.wikipedia.org/wiki/Co-opetition
http://www.talentfirstnetwork.org/wiki/images/6/69/Building_technical_communities_June_4.pdf

Community Defined

A community refers to people who share
a common interest or passion and inter-
act with each other about the given pas-
sion, regardless of their geographic
location. Participation in a community
can be compelling and sticky in that
people return frequently and remain for
extended periods. A community is im-
portant to your company because, it:

* provides closer contact with your
customers and users

* facilitates the development and delivery
of a whole product or solution

e supplements technical support
e provides word of mouth marketing
* accelerates technology adoption

¢ enables a small number of individuals
to have significant impact worldwide

In a technical community: i) peers, not
vendors, determine the message; ii) de-
velopers talk to other developers, not
through intermediaries or press releases,
and marketers produce content such as
case studies that help developers sell up
to their managers; iii) people speak to
people, not a market or a demographic at-
tribute; iv) employees interact with
people who are saying good and bad
things about their companies; iv) interac-
tions first build trust and then build
value; and iv) you learn to live with your
competitors being part of the same com-
munity.

It is a myth that committers are volun-
teers. The committers for the established
open source projects are nearly all paid
by companies to commit code to open
source projects. Non-monetary motives
for an individual to contribute to a tech-
nical community include:

30

T LECTURES

* satisfy a passion for doing something
interesting while receiving immediate
feedback

e satisfaction from seeing individual's
code being used and talked about

» satisfaction from being able to fix code
immediately

e self branding that leads to consulting
work and/or increase in the number and
quality of job opportunities

To successfully interact with a technical
community, you should: i) be authentic;
and ii) respond and react respectfully, ac-
curately and quickly. Other insights from
this portion of the lecture include:

e customers and venture capitalists wish
to know how healthy a technical com-
munity is using metrics that include size,
diversification and talent

* metrics, beyond counting numbers of
downloads, are needed to assess the
health of a community

* monetizing a community is a delicate
skill

e venture capital firms see a community
as a mechanism that lowers their risks as
well as lowers their ventures' sales and
marketing costs

* old marketing is either broken or chan-
ging and new marketing is community-
based

e top down marketing is still needed
because technical people must sell up to
their managers

* old school marketers usually don’t have
the technical skills required to join a
community and gain the interest of
developers without insulting them or
being insulted by them

Building Communities

In order to build a community, you must
produce good code that solves a compel-
ling problem and/or decreases develop-
ment costs. You must also ensure that the
conversation about the code is worth-
while. Make it easy to contribute to the
community by providing: i) documenta-
tion that lowers the barrier to under-
standing the code; ii) tutorials, white
papers and books; and iii) experts who
monitor newsgroups and bug databases
to provide prompt and accurate feedback.

Community building also requires trans-
parency. Signs of transparency include: i)
maintaining open bug databases; ii) pub-
lishing project meetings; and iii) publish-
ing project plans and incorporating
community's feedback into plans. Be
part of the community, do not attempt to
control it. Provide a governance structure
that fits with the aims of the community.

An architecture of participation
(http://www.oreillynet.com/pub/wlg/
3017) includes low barriers to entry for
newcomers and some mechanism for
isolating the cathedral from the bazaar
(http://en.wikipedia.org/wiki/
The_Cathedral and the Bazaar). An ar-
chitecture of participation allows for a
free market of ideas, in which anyone can
put forward a proposed solution to a
problem. From experience, an architec-
ture of participation that is comprised of
a very large run-time system as the plat-
form (cathedral) with plug-ins on top
(bazaar) does not work.

A good architecture of participation sup-
ports a small cathedral which enables a
bazaar where it is easy for individuals to
add their ideas to the platform. For ex-
ample, Eclipse is a platform that includes
a small run-time system which enables
add-ons and other components to run on
top of the platform.

31

T LECTURES

It is important that providers of new add-
ons are on the same footing as those who
provided the original system. A successful
architecture of participation:

» empowers individuals and small groups
to make decisions

e provides open APIs and commercial
friendly licenses

* enables suppliers to compete on imple-
mentations and the users, not the plat-
form, to decide who wins

* is easy to integrate and extend
e spurs innovation
* seeds a broader ecosystem

 promotes a culture of openness, trans-
parency and meritocracy

Some successful communities have
strong, visible technical leaders. Ex-
amples include Linus Torvalds for the
Linux community, David Heinemeier
Hansson (DHH) for Rails, and Mark Shut-
tleworth for Ubuntu. Other successful
communities have various community
leaders. In these communities, the quality
of the code is more important than the
visibility of the leaders.

To overcome challenges found in com-
munities, it is often better to first obtain
feedback and then make an executive de-
cision. Communities fail because:

* they don't produce good code and/or
the conversation about the code is not
worthwhile

¢ there are no visible leaders and code is
of poor quality

¢ no or little effort is invested into nurtur-
ing the community

http://www.oreillynet.com/pub/wlg/3017
http://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar

Eclipse

Ian finished the presentation with a quick
overview of the Eclipse Foundation
(http://www.eclipse.org) which has 180+
members globally. The approximate
breakdown is: US (50%), Europe (30%)
and the rest of the world (20%). Eclipse's
main marketing objective is to grow the
community and spread the adoption of
Eclipse into vertical enterprise markets.
Eclipse does not compete with member
companies' products. IBM open sourced
Eclipse when it recognized that nobody
wants to build modules for a locked-in
system.

Ian Skerrett is the Director of Marketing at
the Eclipse Foundation, a not-for-profit
corporation supporting the Eclipse open
source community and commercial ecosys-
tem. He is responsible for implementing
programs that raise awareness of the Ec-
lipse open source project and grow the
overall Eclipse community. lan has been
working in the software industry for over
20 years. He has held a variety of product
management and product marketing posi-
tions with Cognos, Object Technology In-
ternational, IBM, Entrust and Klocwork.
He graduated from Carleton University
with a Bachelor of Computer Science and
has an MBA from McGill.

32

T LECTURES

Recommended Reading

Brand Hijack: Marketing Without
Marketing
http://www.amazon.com/Brand-Hijack-
Marketing-Without/dp/1591840783

Developing an Architecture of
Participation
http://project.bazaar.org/wp-content/
stall_project_uploads//2007/09/
111_final_paper.pdf

Does Code Architecture Mitigate Free
Riding in the Open Source Development
Model?
http://www.people.hbs.edu/cbaldwin/
DR2/BaldwinArchPartAll.pdf

http://www.eclipse.org
http://www.amazon.com/Brand-Hijack-Marketing-Without/dp/1591840783
http://project.bazaar.org/wp-content/stall_project_uploads/2007/09/111_final_paper.pdf
http://www.people.hbs.edu/cbaldwin/DR2/BaldwinArchPartAll.pdf

Having had a few more hours to think
about Industry Minister Jim Prentice's
Canadian DMCA (www2.parl.gc.ca/
HousePublications/Publication.aspx?
Docid=3570473&file=4), 1 am left with
one dominant feeling--betrayal. I have
already highlighted the key provisions
(http://www.michaelgeist.ca/content/
view/3025/125/) and coverage (and note
that it will take some time to fully assess
the implications of this bill) but it is im-
mediately apparent that the concerns of
thousands of Canadians--now over
45,000 on the Fair Copyright for Canada
Facebook group alone--have been real-
ized. If enacted, the Canadian DMCA
would strongly encourage the use of tech-
nological locks and lawsuits. While Pren-
tice has given a handful of new rights to
Canadian consumers, each is subject to
many limitations and undermined by the
digital locks provisions that may effect-
ively render the new rights meaningless.

So Why is it a Betrayal?

Because in a country whose Supreme
Court of Canada has emphasized the im-
portance of balance between creators
rights and user rights, the Canadian
DMCA eviscerates user rights in the digit-
al environment by virtually eliminating
fair dealing. Under this bill, the right to
copy for the purposes of research, private
study, criticism, and news reporting virtu-
ally disappears if the underlying content
is digitally locked.

Because in a country that rightly pro-
motes the importance of education, the
Canadian DMCA erects new barriers for
teachers, students, and schools at every
level who now face the prospect of in-
fringement claims if they want to teach
using digital media.

33

CURRENT AFFAIRS

Because in a country that prioritizes pri-
vacy, the Canadian DMCA will render it
virtually impossible to protect against the
invasion of privacy by digital media com-
panies. The bill includes an exemption
for those that circumvent digital locks to
protect their privacy, yet renders the tools
needed to circumvent illegal. In other
words, the bill gives Canadians the right
to protect their privacy but prohibits the
tools needed to do so.

Because in a country that values con-
sumer rights, the Canadian DMCA means
that consumers no longer control their
own personal property. That CD or DVD
or e-book or cellphone you just bought?
The bill says you now have the right to en-
gage in "private use copying" but not if it
contains digital locks.

Because the Conservative Party of
Canada promised to Stand Up for
Canada, yet the Canadian DMCA is quite
clearly U.S.-inspired legislation, the res-
ult of intense pressure from U.S. officials
and lobby groups.

Because the government pledged to table
treaties for House of Commons debate
before introducing implementing legisla-
tion and failed to do so. Claims that this
legislation does not ratify the treaties viol-
ates the spirit of that commitment.

Because ratification of the World Intellec-
tual Property Organization's Internet
Treaties can be accomplished in a far
more balanced manner.

Because countries such as New Zealand
and Israel have demonstrated that there
is no need to blindly follow U.S. demands
on the copyright file.

Because the interests of individual Cana-
dians--including those calling for more
flexible fair dealing--is completely ig-
nored.

http://www2.parl.gc.ca/HousePublications/Publication.aspx?Docid=3570473&file=4
http://www.michaelgeist.ca/content/view/3025/125/

Because the Canadian DMCA was intro-
duced without consulting consumer
groups, education groups, civil society
groups, or the Canadian public.

Because Jim Prentice knows better. He
saw first-hand the passion of Canadians
calling for balanced copyright and has re-
ceived thousands of calls and letters on
the issue. Yet rather than genuinely work-
ing to craft a balanced solution, he opted
to release a fatally flawed bill.

Despite all that, I still also harbour some
optimism. The events of the past six
months have demonstrated conclusively
that Canadians care about balanced
copyright even if the Industry Minister
does not. Over the coming months, I
firmly believe that we will see the fair
copyright movement expand well beyond
what has been just built. We will see Ca-
nadian musicians, songwriters, artists,
and filmmakers speak out against this le-
gislation. We will see companies of all
sizes and all sectors speak out against
this legislation. We will see the privacy
groups, education groups, and consumer
rights groups speak out against this legis-
lation.

We will see the NDP speak out against
this legislation. We will see the Liberals--
who are already focusing on the lack of
consultation and the prospect of a police
state--ultimately identify their Bill C-60
as a better approach and speak out
against this legislation. We will see Con-
servative MPs from coast to coast (includ-
ing the Conservative candidate from the
forthcoming Guelph by-election) wonder
why their party has introduced a bill that
runs counter to their own policies and
(quietly) speak out against this legislation.

We will see thousands of Canadians
speak out against this legislation again
and again and again until it is changed.

34

CURRENT AFFAIRS

The Canadian DMCA is a kick in the gut
to Canadians everywhere. But I believe
we will get back up and demand better.
Start now:

1. Write to your MP, the Industry Minister,
the Canadian Heritage Minister, and the
Prime Minister. If you send an email,
print it out and drop a copy in the mail. If
you are looking for a sample letter, visit
http://www.copyrightforcanadians.ca/
action/firstlook/.

2. Take 30 minutes to meet directly with
your MP. From late June through much of
the summer, your MP will be back in your
community. Every MP in the country
should return to Ottawa in the fall having
heard from their constituents on this is-
sue.

3. If you are not a member of the Fair
Copyright for Canada Facebook group
(http://www.facebook.com/group.php?
gid=6315846683), join. If you are, con-
sider joining or starting a local chapter
and be sure to educate your friends and
colleagues about the issue.

This article originally appeared as a blog
entry (http://www.michaelgeist.ca/
content/view/3029/125/). You can learn
more about the Canadian DMCA and oth-
er copyright issues at Michael Geist's blog
(http://lwww.michaelgeist.cal).

Michael Geist is a law professor at the Uni-
versity of Ottawa where he holds the
Canada Research Chair of Internet and E-
commerce Law. He has obtained a Bachel-
or of Laws degree from Osgoode Hall Law
School in Toronto, Master of Laws degrees
from Cambridge University and
Columbia Law School, and a Doctorate in
Law from Columbia Law School. Dr. Geist
serves on the Privacy Commissioner of
Canada’s Expert Advisory Board and
maintains http://privacyinfo.ca, a leading
privacy law resource.

http://www.copyrightforcanadians.ca/action/firstlook
http://www.facebook.com/group.php?gid=6315846683
http://www.michaelgeist.ca/content/view/3029/125/
http://www.michaelgeist.ca/
http://privacyinfo.ca

Q. I can understand how small busi-
nesses and startups can benefit from the
no-licensing costs associated with open
source software (0OSS). Can you provide
an example of a business reason for us-
ing OSS other than the licensing cost of
the software?

A. Here is an example that occurred dur-
ing a time when worm outbreaks were
just starting to hit organizations hard.
Some organizations were already receiv-
ing feedback as traffic caused by com-
puter worms was causing networks to
fail, and failing is the worst form of feed-
back.

At Bell Canada, our large internal net-
work was running well. Being a carrier,
the internal network was very well con-
nected. Having many experts within the
company to design and build the net-
work, it was configured to withstand very
heavy usage and to handle some types of
failure modes gracefully. Considering the
many worms of the time, the network did
very well at isolating the mischievous
traffic to the periphery of the network.

Bell has systems to monitor many differ-
ent aspects of the network and its at-
tached computers. With such a robust
network and high degree of network isola-
tion, however, there was not enough in-
formation to track worm propagation in
detail. At least not in the detail expected
by the executives who wished to identify
and track the extent of worm propaga-
tion and incident management effective-
ness using metrics and reporting that
business people could understand.

There were vendors who had monitoring
solutions which could provide the met-
rics, but they would be expensive. In a
large organization like Bell Canada, the
expense itself was not an issue and the
procurement process started almost im-
mediately.

35

Q& A

In a large organization, however, the pro-
curement process does not get com-
pleted overnight. The investment needed
for the additional monitoring was going
to be significant as this large network has
tens of thousands of nodes and hundreds
of physical locations. Accordingly, pro-
cedures had to be followed, including the
need for technology studies for specifica-
tions, assessments, a proper bidding pro-
cess, architecture, design and operational
reviews.

Enter open source software (OSS), an old
computer, a motivated systems adminis-
trator, and some teamwork. A plan was
developed to build a darknet
(http://www.team-cymru.org/Services/
darknets.html). The Bell incident re-
sponse process had already been initi-
ated due to the industry recognition of
this particular worm outbreak, even
though Bell had no indications of prob-
lems internally. A subcommittee was es-
tablished, network configuration changes
were made, operational processes out-
lined, and a single server was configured
with some OSS.

Within a day, statistically significant re-
porting was established on a near real
time basis which met the immediate in-
cident management metric and reporting
needs. The executives and incident man-
agement groups were confident that the
magnitude of impact was now under-
stood, and that the effectiveness of the re-
mediation efforts could be tracked.

The darknet was successful at the general
reporting required, and actually became
the primary source of detailed informa-
tion needed for the remediation team to
identify and correct the individual net-
work nodes. Further, the darknet's de-
tailed reporting produced the
information needed to identify that, in
some instances, the vendor provided
patch was unsuccessful in removing the
vulnerabilities.

http://www.team-cymru.org/Services/darknets.html

For some situations Bell has significant
influence, so when Bell discovers a failed
patch it may actually expedite a proper
solution for a much larger community.

The OSS had the functionality necessary
to meet 90% of the immediate goals "out-
of-the-box". The open logging formats
and well documented utilities allowed for
quick adaptation to the business need.
The secure-by-default, transparent and
understandable configuration, and ecolo-
gical diversity from the main devices be-
ing monitored, gave confidence that the
system would not be affected by the mal-
ware traffic it was monitoring.

For the technical reader, the tracking
server was setup using an OpenBSD
(http://www.openbsd.org) server for col-
lecting network information, native tcp-
dump and Perl for extracting and
reporting on logs, native syslog's ability
to launch programs and nbtstat to collect
near real time information about host-
names and userids. O'Reilly's Perl Cook-
book (http://www.oreilly.com/catalog/
9780596003135/) facilitated the creation
of much of the glue. These tools, plus the
co-ordination with the network opera-
tions group, were all that was needed to
setup the darknet, a blackhole where
packets go in but nothing leaves but in-
formation.

36

Q& A

Alan Morewood has been involved with
open source since discovering Linux in
1992. In 1993, he started as a systems ad-
ministrator for Bell Sygma, bringing the
standard GNU tools to the attention of the
sysadmins familiar only with expensive
commercial tools. While at Bell Sygma, he
learned about security by managing the
main corporate Internet gateway and es-
tablishing the first bell.ca platform. Bell
Canada's corporate security department
solicited his participation in 1996 where
he continues today by coaching employees
in the relationship between networks, sys-
tem administration, security, and business
needs. Alan has a B.A.Sc in Systems Design
Engineering from Waterloo, a PEng, and is
CISSP certified.

http://www.openbsd.org
http://www.oreilly.com/catalog/9780596003135

The goal of the Talent First Network Proof
of Principle (TFN-POP) is to establish an
ecosystem anchored around the commer-
cialization of open source technology de-
veloped at academic institutions in
Ontario.

The priority areas are the commercializa-
tion of open source in:

* Mapping and geospatial applications

e Simulation, modeling, games, and
animation

* Conferencing

* Publishing and archiving

e Open educational resources

* Social innovation

* Business intelligence

* Ecosystem management

* Requirements management

Expected Results

The TFN-POP is expected to:

e Establish a healthy ecosystem anchored
around the commercialization of open
source assets

* Maximize the benefits of the investment
in the Talent First Network by the
Ministry of Research and Innovation

* Accelerate the growth of businesses in

Ontario that use open source assets to
compete

37

CALL FOR PROPOSALS

Eligibility to Receive Funds

Individuals eligible to receive funds are
faculty, staff, and students of universities
and colleges in Ontario.

Budget and Size of Grants

A total of $300,000 is available. Applic-
ants’ requests should not exceed $30,000.

The TFN-POP may provide up to 50
percent of total project costs.

Criteria

Proposals will be judged against the fol-
lowing five criteria:

e Strength and novelty of open source
technology proposed

* Extent of market advantage due to open
source

* Project deliverables, likelihood that the
proposed activities will lead to deliver-
able completion on time, and effective-
ness of the plan to manage the project

* Track record and potential of applicants
* Extent of support from private sector
Application

The electronic version of the application
received by email at the following ad-
dress: TFNCompetition@sce.carleton.ca
will be accepted as the official applica-
tion. The email must contain three docu-
ments: a letter of support, project’s vitals,
and a project proposal.

Letter of support: (maximum 2 pages) a
letter, signed by the person responsible
for the Technology Transfer Office or Ap-
plied Research Office of the academic in-
stitution that proposes to host the project
and the faculty member or student who
will lead the project, must be included.
This letter should describe the nature of
the support for the project from the aca-
demic institutions, companies and other
external organizations.

Project’s vitals: (maximum 1 page) The
project’s vitals must include:

* Person responsible for applied research
or technology transfer at the college
submitting the proposal: name, mailing
address, telephone number, and email
address

* Project leader: name, mailing address,
telephone number, and email address

* Team members: names, mailing
addresses, telephone numbers, and
email addresses

e Budget: Total budget, with TFN's contri-
bution and that of other organizations

* TEN investment: TFN contribution
broken down by payments to students,
payments to faculty, and payments to
project awareness activities

Project proposal: (maximum 5 pages)
Project proposal must include the follow-
ing:

e Benefits: (maximum 1/2 page) Descrip-
tion of the benefits of the proposed
project, and an overview of the context
within which the project is positioned

* Advantage: (1/2 page) Market advant-
age provided by open source assets
used in the project

38

CALL FOR PROPOSALS

e Information on applicants: (maximum
1.5 pages) Background information to
help assess the track record and poten-
tial of the people who are key to the
project and the college

* Project plan: (maximum 2.5 pages)
Description of the deliverables (what
will be delivered and when); key project
activities; nature of the involvement
from companies, and other external
organizations; and plan to manage the
project

Evaluation & Deadline

Proposals will undergo review by the Ex-
pert Panel established by the TFN-POP.
The Chair of the Panel may contact the
applicants if required. A final decision
will be communicated to the applicants
within 30 days after the email with the of-
ficial application is received.

There is no deadline. Applications will be
evaluated on a first-come basis until the
$300,000 available is committed.

Contacts

Luc Lalande: Luc_Lalande@carleton.ca
Rowland Few: rfew@sce.carleton.ca
About the Talent First Network

The Talent First Network (TFN) is an
Ontario-wide, industry driven initiative
launched in July 2006 with the support of
the Ministry of Research and Innovation
and Carleton University. The objective is
to transfer to Ontario companies and
Open source communities: (i) Open source
technology, (ii) knowledge about compet-
ing in Open source environments and (iii)
talented university and college students
with the skills in the commercialization of
Open source assets.

RECENT REPORTS

Evaluation of Ten Standard Setting Organizations with Regard to Open Standards
Copyright: IDC
From the Introduction:

This document has been prepared by IDC for the Danish National IT and Telecom Agency
(NITA). It describes a methodology to evaluate SSOs (standard setting organizations) with re-
gard to the degree of openness of the organization and thereby the degree of openness in their
deliverables. The NITAs assessment of degree of openness is part of an overall assessment of
standards where, beside the aspect of openness, public value and market support are also as-
sessed.

http://www.itst.dk/arkitektur-og-standarder/Standardisering/Aabnestandarder/
baggrundsrapporter

Undocumented Open Source Leaves a Gap in Your Application Security Strategy
Copyright: Palamida
From the Executive Overview:

Application security is more susceptible than ever in today’s dynamic application develop-
ment landscape. Most applications, internal and external, developed within the last five years,
include at least 30% open source (OSS) and third-party components. And by 2010, open
source products will be well established in 75% or more of mainstream enterprises. While im-
portant to a company'’s bottom line, this increase in OSS usage presents a huge security chal-
lenge to organizations industry-wide. The root cause of many application security
vulnerabilities lies in the application source code. The problem is that the sheer size of a code
base coupled with the number of contributing developers makes it nearly impossible for com-
panies to get an accurate assessment of their software assets, much less a clear understanding
of the vulnerabilities associated with the adopted code.

http://www.palamida.com/themes/resources/
Palamida_WhitePaper_ImportanceofAppSource.pdf

39

http://www.itst.dk/arkitektur-og-standarder/Standardisering/Aabnestandarder/baggrundsrapporter
http://www.palamida.com/themes/resources/Palamida_Whitepaper_ImportanceofAppSource.pdf

Open Source Curriculum Expanded at
Seneca

May 21, Toronto, ON

Red Hat, Inc. today announced that
Seneca College will expand the use of
open source software in its curriculum
through the Fedora Project, a Red Hat
sponsored and community-supported
open source collaboration. Seneca Col-
lege students in the School of Computer
Studies will work within the Fedora Pro-
ject while learning open source develop-
ment and administration. As the
principles and methodologies of open
source are changing the software in-
dustry, Red Hat and Seneca College are
committed to driving change through
new models of computer science educa-
tion.

http://lwn.net/Articles/283274/

Launching of the CIPP Wiki
June 2, Montreal, QC

A great deal has been written recently
about copyright reform in Canada. Cana-
dians have all been reflecting on a variety
of copyright-related issues, as these ques-
tions and controversies jump out at us in
both the traditional and digital media.
Now that the various constituents in this
debate have put forward their best cases
on various points for potential reform, we
have decided at the CIPP to try to provide
all participants to have a direct hand in
creating a Copyright Act through a wiki
platform. Help us draft a reformed Copy-
right Act by logging on the CIPP wiki page
and giving us your suggested changes
and providing good reasons. he wiki plat-
form will be opened until July 15.

http://www.cipp.mcgill.ca/en/news/
newsletter/172/

40

NEWSBYTES

Copyright Bill will Hurt Innovators
June 3, Ottawa, ON

A new coalition of Canadian software
businesses and supporters is concerned
about how reforms to Canadian copy-
right laws might affect the open source
business model. The Canadian Software
Innovation Alliance (CSIA) represents
over 20 businesses that specialize in open
source software. The CSIA is particularly
concerned about potential changes to
copyright law, such as making it illegal to
tamper with technological protection
measures. In everyday language the pro-
posed legislation is similar to making the
use and ownership of screw-drivers and
pliers illegal because they can be used to
commit crimes such as burglary. Similar
laws in other countries, such as the Digit-
al Millennium Copyright Act in the
United States, have caused problems for
consumers and businesses alike.

http://www.softwareinnovation.ca/
wp-content/uploads/2008/06/
csia_media_release-final-3june2008.pdf

http://lwn.net/Articles/283274/
http://www.softwareinnovation.ca/wp-content/uploads/2008/06/csia_media_release-final-3june2008.pdf
http://www.cipp.mcgill.ca/en/news/newsletter/172/

June 25

Symposia On Eclipse Open Source
Software

Ottawa, ON

Eclipse and OMG are jointly organising
symposia to promote and build on the
partnership between Eclipse's open
source software and OMG's open stand-
ards during the OMG Technical Meeting
in Ottawa. The symposia is a unique op-
portunity to participate in shaping the
joint future of the Eclipse Open Source
community and the OMG Open Stand-
ards community. Please join us for a day
of stimulating technical planning and dis-
cussion.

http://www.omg.org/news/meetings/
eclipse-omg-2008/index.htm

June 25-27
Open Scholarship
Toronto, ON

The objective of the conference is to
bring together researchers, lecturers, lib-
rarians, developers, business executive,
entrepreneurs, managers, users and all
those interested in issues regarding elec-
tronic publishing in widely differing con-
texts. This year's presentations include
the topic of Open Access.

http://www.elpub.net/

41

UPCOMING EVENTS
July 15-16

2008 Wireless & Mobile Expo and
Conference

Toronto, ON

The 2008 Wireless & Mobile Expo and
Conference and Expo is a value-packed
IT conference and exhibition that will
educate senior executives, IT managers,
program managers and technical special-
ists on the future adoption and integra-
tion of wireless enterprise architecture,
mobile networks and user-defined
products, in demand today. It serves to fo-
cus and align an organization’s IT invest-
ments with business goals and
substantially improve its business per-
formance and productivity.

http://wirelessandmobile.wowgao.com

July 21-25
GeoWeb 2008
Vancouver, BC

The GeoWeb 2008 conference reflects the
breadth, evolution and growing maturity
of the ability to locally/globally integrate
and share geospatial information via the
Internet. It is one of the only conferences
focusing exclusively on the convergence
of GIS and the Internet, and the econom-
ic potential associated with the conver-
gence of XML, web services and GIS.

http://geowebconference.org

http://www.omg.org/news/meetings/eclipse-omg-2008/index.htm
http://wirelessandmobile.wowgao.com
http://www.elpub.net
http://geowebconference.org/about-geoweb-2008/about-geoweb-2008

July 23-26
Linux Symposium
Ottawa, ON

The Linux Symposium is one of the fore-
most Linux and Open Source confer-
ences in the world, bringing together
software developers, industry profession-
als and enthusiasts to discuss the latest
emerging technologies and ways to im-
prove the functionality and integration of
Linux and Open Source software. 2008
marks the 10th anniversary of the confer-
ence and we are very excited about celeb-
rating the progress the Linux community
has made in the past decade. The confer-
ence will also focus on looking towards
the future of Linux and Open Source De-
velopment through groundbreaking
presentations and discussions.

http://www.linuxsymposium.org/

August 4-8
Agile 2008
Toronto, ON

Agile 2008 presents the latest techniques,
technologies from both a management
and development perspective, for suc-
cessful Agile software development. Agile
2008 puts attendees in contact with the
latest thinking in the agile domain,
bringing together executives, managers,
software development practitioners and
researchers from labs and academia. The
conference is not about a single method-
ology or approach, but rather provides a
forum for the exchange of information re-
garding all agile development technolo-
gies.

http://www.agile2008.org/

42

UPCOMING EVENTS
August 10-14

74th TFLA General Conference and Coun-
cil

Quebec, QC

Open Source, distributed services deliv-
ery, web services and smart clients
provide new paradigms for delivery of lib-
rary services technology to small and spe-
cial libraries. The theme of the 74th World
Library and Information Congress is "Lib-
raries without borders: navigating toward
global understanding".

http://www.ifla.org/IV

http://www.ifla.org/IV
http://www.linuxsymposium.org
http://www.agile2008.org

The goal of the Open Source Business Re-
source is to provide quality and insightful
content regarding the issues relevant to
the development and commercialization
of open source assets. We believe the best
way to achieve this goal is through the
contributions and feedback from experts
within the business and open source
comimunities.

OSBR readers are looking for practical
ideas they can apply within their own or-
ganizations. They also appreciate a thor-
ough exploration of the issues and
emerging trends surrounding the busi-
ness of open source. If you are consider-
ing contributing an article, start by asking
yourself:

1. Does my research or experience
provide any new insights or perspect-
ives?

2. Do I often find myself having to
explain this topic when I meet people
as they are unaware of its relevance?

3. Do I believe that I could have saved
myself time, money, and frustration if
someone had explained to me the
issues surrounding this topic?

4. Am I constantly correcting misconcep-
tions regarding this topic?

5. Am I considered to be an expert in this
field? For example, do I present my
research or experience at conferences?

43

CONTRIBUTE

If your answer is "yes" to any of these
questions, your topic is probably of in-
terest to OSBR readers.

When writing your article, keep the fol-
lowing points in mind:

1. Thoroughly examine the topic; don't
leave the reader wishing for more.

2. Know your central theme and stick to it.

3. Demonstrate your depth of under-
standing for the topic, and that you
have considered its benefits, possible
outcomes, and applicability.

4. Write in third-person formal style.

These guidelines should assist in the pro-
cess of translating your expertise into a
focused article which adds to the know-
ledgable resources available through the
OSBR.

July 2008 Accessibility
August 2008 Education

September 2008 Social Innovation

Formatting Guidelines:

All contributions are to be submitted in
.txt or .rtf format and match the following
length guidelines. Formatting should be
limited to bolded and italicized text.
Formatting is optional and may be edited
to match the rest of the publication. In-
clude your email address and daytime
phone number should the editor need to
contact you regarding your submission.
Indicate if your submission has been pre-
viously published elsewhere.

Articles: Do not submit articles shorter
than 1500 words or longer than 3000
words. If this is your first article, include a
50-75 word biography introducing your-
self. Articles should begin with a thought-
provoking quotation that matches the
spirit of the article. Research the source
of your quotation in order to provide
proper attribution.

Interviews: Interviews tend to be
between 1-2 pages long or 500-1000
words. Include a 50-75 word biography
for both the interviewer and each of the
interviewee(s).

Newsbytes: Newsbytes should be short
and pithy--providing enough informa-
tion to gain the reader's interest as well as
a reference to additional information
such as a press release or website. 100-
300 words is usually sufficient.

Events: Events should include the date,
location, a short description, and the
URL for further information. Due to the
monthly publication schedule, events
should be sent at least 6-8 weeks in ad-
vance.

Questions and Feedback: These can
range anywhere between a one sentence
question up to a 500 word letter to the ed-
itor style of feedback. Include a sentence
or two introducing yourself.

44

CONTRIBUTE

Copyright:

You retain copyright to your work and
grant the Talent First Network permis-
sion to publish your submission under a
Creative Commons license. The Talent
First Network owns the copyright to the
collection of works comprising each edi-
tion of the OSBR. All content on the
OSBR and Talent First Network websites
is under the Creative Commons
attribution (http://creativecommons.org/
licenses/by/3.0/) license which allows for
commercial and non-commercial redistri-
bution as well as modifications of the
work as long as the copyright holder is at-
tributed.

http://creativecommons.org/licenses/by/3.0

SPONSORS

Ontario

The Talent First Network pro-
gram is funded in part by the
Government of Ontario.

[7:2] © Carteton

The Technology Innovation Management (TIM) program is a master's
program for experienced engineers. It is offered by Carleton Uni-
versity's Department of Systems and Computer Engineering. The TIM
program offers both a thesis based degree (M.A.Sc.) and a project based
degree (M.Eng.). The M.Eng is offered real-time worldwide. To apply,
please go to: http://www.carleton.ca/tim/sub/apply.html.

45

http://www.carleton.ca/tim/sub/apply.html

